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The Saffman-Taylor problem addresses the morphological instability of an interface separating two immis-
cible, viscous fluids when they move in a narrow gap betweerflatparallel plategHele-Shaw cel In this
work, we extend the classic Saffman-Taylor situation, by considering the flow betweecutwed closely
spaced, concentric spherepherical Hele-Shaw cellWe derive the mode-coupling differential equation for
the interface perturbation amplitudes and study both linear and nonlinear flow regimes. The effect of the
spherical cellpositive) spatial curvature on the shape of the interfacial patterns is investigated. We show that
stability properties of the fluid-fluid interface are sensitive to the curvature of the surface. In particular, it is
found that positive spatial curvature inhibits finger tip-splitting. Hele-Shaw flow on weakly negative, curved
surfaces is briefly discussed.
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[. INTRODUCTION in flat cells is described by the very same set of equations as
those for flow in porous medig], which is indeed a highly
Formation and evolution of dynamic structures is an ex-nonflat environment, characterized by voids and curved in-
citing area of nonlinear phenomenology. Of particular practernal surfaces. Even though viscous fingering is not re-
tical and theoretical interest is the hydrodynamic pattern forstricted to occur between flat surfaces, the study of the
mation of the growing interface between two fluids. One ofSaffman-Taylor problem on curved surfaces has been prac-
the best studied pattern-formation systems of this type is thécally neglected. One exception is the experimental work by
Saffman-Taylor problenjl,2]: it addresses motion of two Zhao and Mahef8], which considers flow in a cylindrical
viscous, immiscible fluids in the narrow space between twdHele-Shaw cell with a large radius of curvature. The flow is
parallel, flat plates known as a Hele-Shaw cell. When a fluidperformed parallel to the cell axis. They used the cylindrical
of low viscosity displaces a fluid of higher viscosity, the cell as an experimental realization of a flat rectangular Hele-
interface between them becomes unstable and deforms. Dghaw cell with periodic boundary conditions. Their experi-
namic competition leads to the formation of fingering struc-ments showed that instabilities in cells with periodic bound-
tures. ary conditions are qualitatively similar to instabilities in cells
Experiments and theory focus on two principal geom-with physical sidewalls. The authors did not explore the in-
etries:(i) rectangulaf1,2] and(ii) radial[3-5]. In rectangu- fluence of cell curvature.
lar cells the unperturbed interface is straight and the unper- On the theoretical side, Entov and Etindg® considered
turbed flow is uniform and parallel to cell walls. In the radial the general mathematical problem of viscous flow in nonpla-
case the unperturbed interface is circular with the less vispar Hele-Shaw cells, in the zero-surface-tension limit. They
cous fluid pumped into the more viscous one at a point an@pplied conformal mapping techniques to derive a class of
the flow radially outward. For both situations, the initial de- explicit solutions for the shape of the fluid domain under
velopment of the interface instability tracks the predictionsstudy. As in Ref[8], the authors in Ref.9] were not inter-
of linear stability theory{1-5]. After the initial surface de- ested in the influence of the cell curvature in the shape of the
formation, as the unstable modes of perturbation grow, thejnterfacial patterns.
become coupled in a weakly nonlinear stage of evolution Spatial curvature has been a relatively overlooked feature
[6,7]. Finally, the system evolves to a complicated late stagein the study of other pattern formation systems as well. Only
characterized by formation of fingering structures, in whichrecently researchers started to investigate how the properties
nonlinear effects dominate]. As a result, beautiful finger- of the patterns could be affected by the curvature of the
bubble undulated structures are formed in rectangular cellsurface in which such structures evoM®-115. In the early
while visually striking, fanlike, branched patterns rise in ra-1990s Levine and collaborators studied coarsening of two-
dial flow. Spreading, splitting, and competition are the threedimensional foamg10] and grain growth[11] on curved
basic growth mechanisms of the viscous fingering processurfaces. They showed that the stability properties of such
[2]. In this work we are particularly interested in tip-splitting froth bubbles and grains depended on the curvature of the
events. surface. Referencgl2] reviews the dependence of many
Despite the extensive experimental and theoretical workchemical and biochemical surface processes on curvature.
on the Saffman-Taylor problem in both radial and rectanguNumerical studies of reaction-diffusion systems in curved
lar setups, the majority of the studies focus on flowflat  spaces examine the evolution of spiral way28] and the
Hele-Shaw cells. Curiously, the dynamic behavior for flowoccurrence of Turing patterns on a sphgtd]. These nu-
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merical simulationg13,14] indicate that curvature imposes
geometrical restrictions on the shape of the patterns. Finally,
Schoenborn and DeskHil5] studied the intrasurface kinetics
of phase ordering on curved surfaces.

For the Saffman-Taylor problem, the interplay between
Hele-Shaw cell curvature and interfacial pattern formation is
largely unexplored in the present literature. However, in a
recent mode-coupling analysis of radial flow in flat cells,
Miranda and Widonj 7] suggested that cell curvature could
be used as a control parameter to regulate the tendency to-
wards finger tip-splitting. A thorough investigation of the
relationship between cell curvature and the fluid—fluid inter-
face dynamics still needs to be addressed. In this work we
begin such investigations, focusing on the Saffman-Taylor
problem on a sphere. Gravity effects have been studied in
Ref.[16].

The study of viscous flow in a nonplanar Hele-Shaw cell
is of interest for both scientific and practical reasons. On the
scientific level, the influence of spatial curvature on hydro-
dynamic flow is a matter of fundamental interest. It also
provides a simple mathematical model to describe more gen-
eral situations involving the filling of a thin cavity between
two walls of a given shape with fluid. On the practical level,
it may have applications in a number of industrial, manufac-
turing processes, ranging through pressure moulding of mogh
ten metals and polymer materigld7], and formation of
coating defects in drying paint thin filnj48].

_ The outline of the work is the foIIowing: Seqtion Il dg— d?=dp?+a? Sinz(g)d(pz, (1)
fines Hele-Shaw flow between concentric, thin spherical a
shells, considering fluid injectiofwithdrawa) at the north
(south pole. We derive a differential equation describing thewherea is the radius of curvature of the spheres <2
early nonlinear evolution of the interface modes. In Sec. llldenotes the polar angle measured on the sphere ael 0
we interpret results obtained in Sec. Il and investigate both<a is the geodesic distance from the radial flow source,
the linear and weakly nonlinear evolution of the system. Thdocated at the sphere’s north pole. The sphere has a constant,
flat space limit of infinite radius of curvature is examined in positive Gaussian curvatudé=1/a®> and a constant mean
Sec. Il A. Section Il B discusses the linear growth rates ofcurvatureH=1/a. We presume the Gaussian curvature is
unstable modes and relates these to the degree of lattitude wiore relevant than the mean curvature for reasons discussed
the unperturbed interface. Nonlinear analysis in Sec. Ill Gn Secs. Il A and 1l C. At any stage of our calculation, the
concentrates on the effect of cell curvature on finger tip-‘flat-cell” limit a—« (or, equivalentlyK —0) gives all the
splitting. We show that positive spatial curvature inhibits well-known familiar results for flow in flat Hele-Shaw cells.
splitting. Flow on the northern and southern hemispheres are Denote the viscosities of the upper and lower fluids, re-
contrasted, and a symmetry-breaking behavior is detectedpectively, asy; and z,. Between the two fluids there exists
for the southern hemisphere tip-splitting is replaced by fingea surface tensiowr (Fig. 1). The flows are assumed to be
tip-sharpening. Flow on weakly negative curved surfaces igrrotational, except at the interface. Fluid 1 is injected into
briefly discussed. Section IV presents our final remarks. Arfluid 2 through an inlet located at the sphere’s north pole, at
appendix derives Darcy’s law for flow between concentrica given flow rateQ, which is the area covered per unit time.
spheres. Fluid 2 is simultaneously withdrawn, at the same rate,
through an outlet placed at the south pole.
During the flow, the fluid-fluid interface has a perturbed
Il. MODE COUPLING DIFFERENTIAL EQUATION shape described gs=R=R+{(¢,t). The interface pertur-
] o ) ) ) . bation amplitude is represented bfe,t), andR=R(t) de-

Consider two immiscible, incompressible, viscous fluids,nqtes the time-dependent unperturbed radius. We can calcu-

flowing in a narrow gap of thickness between two concen- |54 R(t) from the time-dependent surface ared(t)

tric, thin spherical shellésee Fig. 1. We name this device _ 4,52 Si(R(t)/2a). For flow rate Q we write .A(t)
the sphericalHele-Shaw cell. Assume thatis smaller than = 4ma? sird(Ry/2a) + Qt then solve for

any other length scale in the problem, so the system is effec-

tively two-dimensional. The flow takes place in the surface ot

of a two-dimensional sphere, embedded in three-dimensional R(t)=a arcco{ Co— ) ' ®)
space, and endowed with the mefri®9] Ta

FIG. 1. Schematic configuration of the flow in a spherical Hele-
aw cell.
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whereCy=cos{R,/a), andR, is the unperturbed radius &t v J . 1 J .
=0. The unperturbed shape is a polar cap of geodesic radius =Pt oo P
p=R, surface aread and circumference£=2masin(R/a). dp”asin(pla) ¢
Note the identityQ=uv £ wherev =dR/dt is the velocity of
the unperturbed interface.

We express the net perturbatigfp,t) in the form of a
Fourier expansion

()

where the unit vectorg and ¢ point in the direction of
increase op and ¢, respectively. Equatiofi7) was obtained
from the corresponding three-dimensional expression for the

te gradient in spherical coordinates, ¢,¢), by keepingr=a
{e )= 2 L(hexping), (3 and noting tha®= p/a.
= At the interface, the pressure difference between the two
where fluids is governed by the mean curvatitee average of the

two principal curvaturesof the fluid-fluid interfacq 2]. We
4) can identify the directions of the principal curvatures in the

limit of b smaller than any other length scale by considering
) _ a “tangent Hele-Shaw cell” consisting of two parallel planes
denotes the complex Fourier mode amplitudes andangent, respectively, to the inner and outer spheres at some
n=0,%1,+2,... is thediscrete azimuthal wave number. sint along the interface. Within the tangent Hele-Shaw cell,
To keep the area of the perturbed shape independent of the\e principal curvature is associated with the interface pro-
perturbationf, we express the Fourier mode correspondingjje in the direction perpendicular to the tangent planes. We
ton=0 in the expansiori3) as call this curvaturex, and note that it is of order f/with a

specific value set by interface contact angles. The remaining
PORIAGIE (5)  direction of principal curvature is parallel to the tangent
n#o plane and tangent to the interface. We call this curvakyre
The constraint5) is intrinsically a nonlinear concern and is Then the pressure jump boundary condition may be written
not required in linear stability analysis.
Since we are interested in both linear and early nonlinear

behavior of the system, we must derive a differential equa- (P1=P2)|r=0 (k) + K1 )|%.- ®)
tion for ¢,, correct to second order. This second-order
mode-coupling equation considers the presence of a ful . .
spectrum gf mgodeqs. We begin the hydrod;F/)namic study of th L‘S was the case f_or flow in flat Hele-Shaw ce_}l§, Is much
system by considering a generalized version of the usui rger than.KH pgt Is nearly constar[QQ,Zj_]. This curvature
Darcy’s law[1,2], adjusted to describe flow between concen- oes not significantly affect the motion in our problem, be-

; cause its gradient is nearly zero.
tric spheressee the Appendix Since the closed boundary describing the fluid-fluid inter-

b2 face is itself on the top of a curved surfatgphere, the
Vi=— Wija (6)  calculation of the “intra-surface” interface curvaturg is
! not as simple as it was in the flat-cell c4del9]. Taking into
where v;=v;(p,¢) and p;=p;(p,¢) are, respectively, the consideration the fact that the interface evolves in the surface
velocity and pressure in fluids=1 and 2. The gradient in of a sphere of radiug, we derive a slightly involved expres-

1 2w )
G- 5= | et -ing)de

1 R
Jo(t)=~— ECOI(Q

Eq. (6), associated with the metrid), is [19] sion for the fluid-fluid interface curvature
ap\? 92
cog pla)a®sirf(pla)+ 2 cogpla) £ —asin(p/a) 0_21
¢
K|= p | 272 . 9
2 i “F
a’sirf(pla)+ 340) }

The sign convention for the curvature; is such that C 1 PL
a circular interface above the equator has positive (K)|R:[_S_W( +—2>
curvature, whereas it has negative curvature below the ass de

equator. Keeping terms up to second order in the per- ) )
turbation amplitudel, we rewrite the interfacial curvature +i §2+1(‘9_§) +2§‘9_§H (10)
as a3s® 2\ ¢ ae?])’
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where we have introduced the shorthand notati&n Inserting expressio® =R+ {(¢,t) and Eq.(15) for ¢; into
=sin(R/a) and C=cosR/a). Exactly at the equatorG=0),  the kinematic boundary conditiof16), we solve for¢;,(t)

only the term in(10) that is linear in{ survives. consistently to second order into find
Taking advantage of the irrotational and incompressible
flow conditions, we define the velocity potenti@| in each bin(t)=— a_Sg _ QC ¢
of the fluids, wherev;= VqS The velocity potential sat- " [n|>" 27agn|>"
isfies Laplace’s equatlofV ¢ =0, whereV? is the two-
dimensional Laplacian deﬂnedl on the surface of the sphere. + > (sgr(nn’) >§n Lo
Combining the velocity potential with Eq$8) and (9) for n'+0 n|
the pressure difference and the generalized Darcy’s(Gw )
we write the equation of motion QC ) S
g —2 sgr(nn )+—§ngn n’ s
27a’S? 7o 2C|n|
dilrt dolr| [ Pulr— Polr
A 3 - > a(kplr, (12) (17
where and
S _as QC
_ 2 1 (12 $on(t)= W§n+mgn
2t 71
is the viscosity contrast and + > (sgr(nn )+| | Lalnn
n’#0
b2o 13 ,
BET PR QC ) S
12(7]1+ 772) 22 2 sgr(nn )_T gn’gn—n’-
. . 27a’S? 2o In|
contains the surface tension.
Now define Fourier expansions for the velocity potentials (18

¢; . Far from the interface the velocity field should approac
the unperturbed steady flow with a circular interface of ra “sgnin’)=1 if (nn')>0 and sgnin’)=—1 if (nn’)<0.

diusR. Thuos forp—0 a_ndp—w-ra_the velocity poter_rt@l% We can use relationd 7) and(18) to replace the velocity
approachgy', the velocity potentials for purely radiap(di-  potentialsg; in the equation of motioit11) with the pertur-

rectior) flow, satisfying Laplace's equation bation ¢ and its time derivativel. Keeping only quadratic

hThe overdot denotes total time derivative. The sign function

Q tan(p/2a) terms in the perturbation amplitude, and equating Fourier
¢]°= 5 og Y +Dj, (14 modesn on each side of Eq(ll), leads to the differential
i an(R/2a) equation for perturbation amplitudés. Forn#0,
whereD; are independent gf and ¢. The general velocity _
potentials obeying all these requirements are {n=N(N) L+ 2 [F(n,n")¢&n-n+G(NN") 0 Lnn ]
. n"#0
tan(R/2a) |- /I (19
=2+ ()| ——n— exping).
$i=9; Z’o Sin(t) tan(p/2a) Kine) where
(15
. . _ Q @
The trigonometric dependence gntransforms, in the flat- A(n)=| ———(A|n|-C)— —|n|(n®>-1)| (20
A . . 2 282 383
cell limit a— <, into the ratioR/p. In order to calculate the ma a
mode coupling differential equation for the system, we subIS the linear growth rate, and
stitute expansiongl4) and(15) into the equation of motion
(11), keep second order terms in the perturbation amplitudes, |n| QAC
and Fourier transform them. F(n,n")= as 2 5 sgnnn’)
To conclude our derivation we need additional relations S

expressing the velocity potentials in terms of the perturbation c ,
amplitudes. To find these, consider the kinematic boundary adl P n_(3nr+n) T 1)
condition which states that the normal components of each a’s® 2

fluid’s velocity at the interface equals the velocity of the
interface itself{22]. Using the gradient?) we write the ki-

1
nematic boundary condition for flow in a sphere as G(n,n")= a—S{A|n|[1—sgr(nn )1-C} (22)

IR 1 ap a¢] o, are the second-order mode coupling terms. Equatl®his
9t | aZsiola) 0@ Ia) 09 99 "\ (16)  the mode coupling equation of the Saffman-Taylor problem
a”sin(p/a) p=R pP=R in a spherical Hele-Shaw cell. It gives us the time evolution
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of the perturbation amplitudes, accurate to second order. In
the following sections we study E¢L9) in more detail, and

PHYSICAL REVIEW B3 036307

limits can be taken(i) (north pole let a— o0 holdingR finite
so thatC—1 andaS—R; (ii) (south polé let a— < holding

investigate the role played by cell geometry in the interfacez’ = ;-3 — R finite; so thatC— —1 andaS—R’; (iii) (tropi-

dynamics.

Ill. DISCUSSION

We use the mode coupling Eq19) to investigate the
linear instability of individual modes and the coupling of a
small number of modes. The most noteworthy effect of cur
vature we identify concerns its influence on finger tip-
splitting. Tip-splitting is related to the influence of a funda-
mental mode on the growth of its harmohi. We taken as
the fundamental andr2as the harmonic. To observe inter-
facial instability of the fundamental mode we must have
N(n)>0. This occurs if the destabilizing contributi@A in
Eq. (20) is positive and sufficiently large compared with the
stabilizing surface tension term proportional 40 To ob-
serve growth of the harmonic moda 2we presume thadA
is sufficiently large thah (2n) is non-negative.

To simplify our discussion it is convenient to rewrite the
net perturbation(3) in terms of cosine and sine modes

{(6,0)={o+ nzl [a,(t)cogné)+b,(t)sin(ng)], (23)

where a,=¢,+{_, and b,=i({,—¢_,) are real-valued.

cal) let R/a be constant and hold fixek=2mn/L. These
three limits correspond to three physically distinct flat space
flow problems. Our goal in this section is to verify that the
linear and nonlinear terms in the equation of motid®)
reduce to their expected forms in the flat space limit. The
actual evolution of interfaces according to the equations of

motion is then discussed in greater detail in Secs Ill B and
I cC.

At the north poldcase(i), C— 1], we recover the mode-
coupling equationg7] of flat, radial divergentflow [23],
related to outward radial motion in which fluid 1 pushes
fluid 2:

Q
27R?

o
(A|n|—1)—§|n|(n2—1)1,

|

a

R3

)\(n)={

1 !
> —sgr(nn’)

|

. _ Il

QA {
2wR?

1 n,3’+
-5 @n'+n)

Without loss of generality we may choose the phase of the

fundamental mode so that>0 andb,,=0. We replace the
time derivative termsa, and b, by x(n)a, and x(n)b,,,

G(n,n")= (27)

1
~{Aln|[1-sgrinn’)]-1}.

respectively, for consistent second order expressions. Under

these circumstances the equations of motion become

asn=A(2n)ay,+:T(2n,n)a2, (24)
ban=A(2N)bsy, (25)

where the tip-splitting function is defined as
T(2n,n)=[F(2n,n)+A(N)G(2n,n)]. (26)

Note that the sign ofT(2n,n) dictates if finger tip-
splitting is favored or not by the dynamics.T{2n,n) <0, at
second order the result is a driving term of ordérforcing
growth ofa,,<<0. With this particular phase of the harmonic
forced by the dynamics, the outwards-pointing fingers of
the fundamental modetend to split. In this case the driving
term in equation of motioit24) spontaneously generates the
harmonic mode. In contrast, (2n,n)>0 growth of a,,

Provided the viscosity contrast>0, so that the less viscous
fluid pushes the more viscous fluid, the interface is linearly
unstable and exhibits finger growth. As the interface pertur-
bation grows, the nonlinear mode coupling broadens and
splits the outward-pointing fingers and sharpens the inward-
pointing fingers. This occurs becaud€2n,n)<<0 when
A(2n)=0.

In contrast, at the south pofease(ii), C— —1], we ob-
tain flat, radialconvergenflow [23] equivalent to the inward
radial motion corresponding to withdrawal of fluid 2 sur-
rounded by fluid 1. Provided thaA>0, so that the less
viscous fluid displaces the more viscous fluid, the interface
remains linearly unstable. However, now the outwards-
pointing fingers sharpen because for negatewe find
T(2n,n)>0 when A (2n)=0. The asymmetry between
north and south pole behaviors occurs primarily in the
nonlinear term and comes from the terms proportionaC.to
In contrast, the linear growth rate(n) is nearly symmetric

>0 would be favored, leading to outwards-pointing finger
tip-sharpening. Note that mod®,,, whose growth is unin-
fluenced bya,,, skews the fingers of mode In the presence
of a,,<0, the role ofb,, is to favor one of the two split
fingers over the other.

between the north and south pole limits. This can be under-
stood because interchanging the north and south poles
is equivalent to reversing the sign @ (the direction of
flow) and the sign ofA (interchanging the fluid viscositigs
while holding the surface tensioa unchanged. However,
the term in\(n) proportional toC breaks this symmetry
slightly.

We begin our discussion by analyzing the flat-cell limit of A special example of the tropical ca&e) is the equato-
the mode-coupling expressidh9). We hold fixed the unper- rial limit, for which C=0 and S=1. This case should be
turbed interface velocity = Q/L. Three distinct flat space compared with the cylindrical flow geometry, taking the cyl-

A. The flat-cell limit
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inder tangent to the sphere at the equator. The flat space limit t
of this problem indeed reduces to the problem of rectangular In(t)= gn(o)ex{f A(n)dt’ | (29
flow in flat space with periodic boundary conditions. In par- 0
ticular,
A(n)—|k|[Av— ak?], If fEx(n)dt’>0 the disturbance grows, indicating instabil-
ity. Two relevant facts can be extracted from the linear
F(n,n")—0, (28)  growth rate:(i) the existence of a series of critical radii
R.(n) [defined by setting\(n)=0] at which the interface
G(n,n")—A[K|[1-sgr(kk’)]. becomes unstable for a given monte(ii) the presence of a

. . " fastest growing moda*, given by the closest integer to the
As expected, there is no tendency for tip-splitting on the : ; X .

. ; . - enlieio - maximum of Eq.(20) with respect ton [defined by setting
cylinder. This alludes to our suggestion that tip-splitting 'Sd)\(n)/dn=0]. In view of Eq.(29) n* is not simply related

controlled by Gaussian curvatukerather than mean curva- o th ber of fi " in th v st f
ture H because variation of the radius of curvature of the'® 1€ NUMbEr OTTINGErs present, even in the early stages o

cylinder alters the mean curvature while the Gaussian curvaQattern formation. Furthermore, in the nonlinear regime the

ture remains zero. Tip-splitting is absent for any value of thesubsequent tip-splitting process and mode competition result

mean curvature in a final number of fingers which can differ from the num-
Before the limit is reached, there are small differencesbercpr?jSent n gh?NIInedaErzLSglmel. flat dial fi

between the spherical and cylindrical cases. For example, the ardoso an 00 analyze Tiat space radial flow

surface tension contribution to(n) vanishes folk=0 on a assuming the presence of a constant low level of noise dur-

cylinder corresponding to translation invariance of the inter-'ngothsee:/hé)g[%\;owrt;%nS?ut:;zsln;?rﬁéfg;e':namociﬁs’from
face length. On a sphere the corresponding displacemef’ﬁh mogeneiti ' n th if f the Hel ySh w cell. ir-
moves the interface from the equator to the tropics, shorter.'OMOYeNeities o e sirace ot e riele—snaw cet,

- : : egularities in the gap thickness or from thermal or pres-
ing the interface and lowering the surface energy. However, . T . )
on a sphere the mod +1 correspond to a global off- Sure fluctuationg25]. The predictions of this model are in

center shift of the circular interface preserving circular shap ualitative agreement with experimental observations within

and perimeter. Thus the surface tension term vanishes for he linear regim¢24] and the nonlinear regime].

— =1 on the sphere while this mode increases the perimet Suppose that we begin with an initially circular interface
- P : P Shat is steadily expanding. During the interface expansion
and raises the energy on a cylinder.

each moden is perturbed with a constaigin time) random
complex amplitude;,(0). This noise amplitude contains an
n dependent random phase but its magnitligg0)| is in-

Consider the purely linear contribution, which appears aslependent oh by assumption. As the interface continues to
the first term on the right-hand side of E@9). SinceR  expand, it progressively reaches critical raRi(n) for n
varies with time, the linear growth ratg(n) is time depen- =2,3,... .0nce a particulaR.(n) is reached, the pertur-
dent as well. This implies that the actual relaxation or growthbation amplitude(,, starts to vary with time. Within this
of moden is not proportional to the factor ejp(n)t], but  model, the first ordeflinean solution of Eq.(19) can be
rather written as

B. Linear growth

£n(0) if R<R¢(n),

1+C.|[ 1]ANI-1 . 30
1TCC ? exp:C(A|n|—C)(T1—1)] if R>RC(”)1 ( )
2

lin t)=
v ¢n(0)

where the functions 7;=tarfR(n)/a]/tan(R/a), 7,  R,=0.05cm. The noise amplitudé,(0)|=R,/1000. Figure
=tar{ R.(n)/2a]/tan(R/2a), andC.= cog§R.(n)/a]. 2 depicts the evolution of the interface, for a random

To see the overall effect of Eq30), we plot the time  choice of phases, up to time=20s. We set the radius
evolution of the interface using the experimental parametersf the sphere=10 cm. We encourage the reader to compare
given in Paterson’s classical experimgbf. Paterson ob- the resulting interface with equivalent figures in flat space.
served the rapid growth of fingers, as air;~0) was blown  Referencd7] contains a figure in which growth conditions
at a relatively high injection rat®=9.3 cnt/s, into glycer-  are similar. In particular, thehasesof the initial perturba-
ine [ 7,~5.21g/(cms] in a radial source flow Hele-Shaw tions are identical, although in the present case we choose
cell. The thickness of the ceb=0.15cm and the surface smaller initial amplitudes. It is also of interest to compare
tension 0=63 dyne/cm. We take into account modas with flat space experimental patterns found in the literature
ranging fromn=2 up to 20. We evolve from initial radius [3,5,23-26.
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FIG. 2. Time evolution of the fluids according to E@O), in- FIG. 3. Nonlinear evolution according to E@®3). All physical
cluding modes Zn=<20. The initial perturbation amplitudes parameters and initial conditions are the same as those used in
|£,(0)]=Ry/1000 andR,=0.05 cm. Other parameters are given in Fig. 2.
the text. We show the fluid-fluid interface &t 20 s.

cate, by splitting at the tip. As was shown in EG4), tip

splitting is caused by fingers of modedriving the growth of
To visualize the consequences of the second order term itheir own harmonic 8.

the equations of motion, we solve Ed.9) to second order Now we turn our attention to the investigation of how

accuracy. If we substitute the linear solution given in Eq.curvature influences finger tip-splitting for Hele-Shaw flow

(30) into the second-order terms on the right-hand side of Eden a sphere. It has been shown in Rgf] that, for flat,

C. Nonlinear behavior and tip-splitting

(19), we obtain the differential equation divergent radial flow under the condition the¢2n)=0, we
) haveT(2n,n)<0. Thus, when the harmonic is able to grow,
{n=A(N)n+W(n,t), (3D finger tip-splitting is favored. In Sec. Ill A we showed that in
the limit of small cell curvatur&k we recover the flat space
where limit where we knowT(2n,n) is negative. To carry out our

current analysis, we consider the case in whigl2n)=0
and see how the curvature influendgn,n).
Since spherical Hele-Shaw flow involves many indepen-
(32 dent parameters we change only one relevant quantity at a
time to see what each one does. We hold the unperturbed
acts as a driving force in the linearized equation of motioninterface velocityv and the unperturbed interface contour
(31). Equation(31) is a standard first order linear differential length £ fixed, while varying the curvaturk. This isolates

W(n,t)= X [F(n.n)mée  +Gnn)men 1
n’#0

equation[27] with the solution the influence of spatial curvatuke from the effect of varia-
tions inv and £. Fixed £ means that fixed mode number
£,(0) if R<Rg(n) corresponds to a fixed wavelength.
. , We adopt arinstantaneouspproach: we look at the lin-
(D)= £t 1+f W_(n,t ) dt’{ if R=R(n). ear growth rate and mode coupling at an instant in time,
" te(n) 'r'{‘(t’) ignoring the past history of how a given interface arose from

(33)  some initial condition followed by growth. Such an instanta-
neous approach, at which andv have a particular value,

Heret.(n) is the time required for the unperturbed growth to enables us to compare the behavior of interfaces evolving in
reach radiufk.(n) and can be calculated from E@). This  distinct background curvatures, but under dynamically
solution describes the weakly nonlinear evolution, where thequivalent circumstances. Moreover, at the instant when the
dominant modes just become coupled by nonlinear effects.interface circumferencg in curved space equals the circum-

We use the second order soluti@@B) to investigate the ference in flat space, if the two velocities also match, the
nonlinear coupling among various modesIn Fig. 3, we identity Q=v £ shows that th&) value in flat space equals
plot the interface for a certain time£20 s), considering theQ value in curved space. Therefore, it is advantageous to
the same random choice of initial phases as was employed inok at the instantaneous tendency towards tip-splitting for
Fig. 2, and coupling all modes with=2n<20. The nonlinear interfaces of identical unperturbedand L.
evolution leads to wider fingers and their tips become more Consider a particulas and £ combination at the onset of
blunt. These fingers spread and some of them start to bifugrowth of mode 2 [using the condition\(2n)=0] in the
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02 The perturbative expansidf4) for smallK explicitly shows
T(Zfl,l’l) a linear correction to the flat space limK €0) that reduces
0.15 the magnitude off (2n,n), inhibiting finger tip-splitting. A
Northern Hemisphere similar kind of expansion can be done for the southern hemi-
S~ = = = = Southern Hemisphere sphere, resulting in enhanced tip-sharpening. Those results
0.1 el are in agreement with the small curvature behavior depicted
Tl in Fig. 4.
0.05 \\\ I_Equation (34) allows us to make predictions abqut tip-
b So splitting behavior for Hele-Shaw flow i(weakly) negatively
__\,;]2‘\)":10 ‘) n=8 curved backgrounds. This type of flow could happen, for
) — instance, between two saddlelike surfaces. Actually, flow in
/ K porous media seems to be somehow linked to flow on nega-
tively curved surfaces. Porous materials define multiply con-
0.05 nected surfaces, presenting negativerageGausssian cur-
001 002 003 004 005 006 0.07 vature
FIG. 4. Variation of T(2n,n) as a function of the spherical
Hele-Shaw cell curvatur&, for modesn=28,10,12. The solid
(dashed curves describe behavior in the NorthéBouthern hemi- _ f Kds 4m(1—g)
sphere. The units of(2n,n) andK are (cms)?! and cm'?, re- K= = , (35
spectively. J ds J ds

limit of flat space, where it is known that(2n,n)<0. To
illustrate how tip-splitting varies with curvature for flow on a

sphere, we plot in Fig. 4 the tip-splitting functidi{2n,n) as  wheredsS denotes an infinitesimal area element agnig the
havior in the northerrisoutheri hemisphere. By inspecting present in a given surface. Expressi@®) relates the inte-
Fig. 4 we notice that, in the northern hemisphere there is g of the Gaussian curvatui€ of a given surface to its
suppression of tip-splitting for increasingly larger Curvaturetopological properties, by virtue of the Gauss-Bonnet theo-

because the magnitude ©f2n,n) is maximum for the flat, . — .
divergent radial casek(=0) and decreases as curvature is"€M[19]- From(35) we verify thatk becomes progressively

increased. For eaahthere is some value df for which the ~ Negative when the number of holes is increased: that is why

circle of circumferencel hits the equator. This is precisely K>0 for a sphere=0), K=0 for a torus §=1) andK

the point at which northern and southern hemisphere<O for ag-torus @=2). In this sense, a medium which is

branches of the curves meet in Fig. 4. rich in pores(holes would present negative curvature fea-
For the southern hemisphefé2n,n) is always positive. tures. However, flow on surfaces ofnstaninegative Gauss-

Consequently, we should not expect finger tip-splitting ofian curvature is complex and to treat the problem rigorously

outward-pointing fingers in this hemisphere. Actually, fingerwould require an interesting generalization of our formalism

tlp-SplIttlng is replaced by tip-narrOWing, along with a Spllt- beyond the scope of the present paper.

ting of the inward-pointing fingers. Finger tip-narrowing is  Here we simply point out what would be the behavior for

regulated by the curvaturé. o , flow on surfaces that are slightinegatively curved. It is
Another noteworthy point about Fig. 4 is the evident SYM-gasy to see, by performing the substitution: —K in (34),

metry breaking inT(2n,n) between northern and southem 4" negative curvature should enhance finger splitting in

hemispheres. The justification for this asymmetry is similare, o2 1icon to the flat case. This is in striking contrast to the

- . Y ; tproblem of flow in positively curved surfaces, such as the
asymmetric in flat radial flow: if we are located at either pole here, where curvature leads to suppression of tip-splitting.

we can always distinguish regions that are inside and outsi This sets an important distinction between Hele-Shaw flows

the interface. That is why convergent and divergent flat, ra : ;
dial flows are not equivaleri3]. From this point of view, on surfaces with negative curvature and those on surfaces

the asymmetry observed in Fig. 4 should be somehow exWith positiveK. Our results confirm explicitly the predictions

pected. made in Ref[7] about the role of cell curvature on finger
We conclude this section presenting the lowest order curSPlitting. L
vature expansion foF (2n,n) and studying how curvaturé The fact that the correction is linear i\ supports our

influences tip-splitting for small curvature values. Using thesuggestion that Gaussian curvature is more relevant than
instantaneous approach described above, series expansionnggan curvature. The same expansion B¢) could be writ-

Eq. (26) for the northern hemisphere yields ten in terms of the square of mean curvatiteHowever,
then we would predict suppression of tip-splitting for both
Q*(2n*+1) Q? positive (H>0) and negativelyii <0) curved surfaces. We
T(2n.n)= 32m2an(2n+1)2 N 8m2an?(2n+1)2 +K believe tip-splitting is enhanced for negative Gaussian cur-
vature because the metric creates ample space for the split
+O(K?). (34)  fingers to penetrate without mutual competition.
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IV. CONCLUDING REMARKS To determineu,(r, ) note that the continuity EqAL)

In this paper we generalized the traditional Saﬁ‘man—""d""pted for polar flow

Taylor problem by studying viscous flow on curved surfaces. 1 a(u,sing) )

Our main purpose was to investigate the influence of spatial i (A4)
curvature on viscous fingering pattern formation, when fluid rsing a6
flow takes place on a sphere. By deriving the equation of
motion for the interface pertubation amplitudes, using ademands a solution of the form
mode-coupling approach, a study of both linear and weakly
nonlinear stages of evolution could be carried out. _u(r)
Uy(r,0)= —. (A5)

We have shown that cell curvature can be used as a con-
trol parameter to discipline splitting of the viscous fingers.
The fluid-fluid interface can be more stable or unstable, withnsert this form into the Navier—Stokes E&\3) and multi-

respect to tip-splitting, depending on the curvature of theply by r siné to separate variables:
surface to which the flow is confined. We also detected an
asymmetry on tip-splitting behavior depending where the in- dp nd
terface evolves: while tip-splitting may be still present on the sin 0(7—0= -
northern hemisphere, it is completely replaced by finger tip-
sharpening on the southern hemisphere. We also found evj; o
dence that Hele-Shaw flows on negatively curved surfacegecause th_e Ie_ft-han_d S.'de m_volves only an_gleand the
. . .~ “Tight-hand side is radial, involving only each side must be
would present enhanced tendency to tip-splitting, so highly

constant sharing a common valBe The solution of the ra-
branched patterns may be expected. In summary, we havcﬁal equation subject to no-slip boundary conditian)
explicitly verified that interfacial behavior is coupled to the q ) P y

sin@

z&u)
r E . (A6)

geometry of the Hele-Shaw cell, so that curvature has impor- u(atb)=0is
tant consequences for flow dynamics. au, (r—a)(a+b—r)
ur=— —————, (A7)
b2
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APPENDIX: DARCY’S LAW ON A SPHERE = u/sin § with

This appendix derives Darcy’s law for viscous flow be- —

tween concentric spheres. The derivation is based upon re- - E}—

sults presented in Birdet al. [28]. We begin with a

coordinate-free representation of the continuity equation fof,ere

an incompressible fluid

V-u=0 (Al) F l+9
a

b
+ 5 |Og( 1+ a }
and the Navier—Stokes equation (A9)

Equation (A9) could also be written, in a more
compact form, as a hypergeometric functiaf(b/a)
=F(1,2;4,—bl/a).

whereu denotes the three-dimensional fluid VelOCity and we Equa’uon(AS) genera"zes the usual flat-cell Ve|0city av-
neglect the acceleration due to gravity. Neglecting the inererage. Darcy’s law becomes

tial terms on the left-hand side of EGA2), transforming to

P =—Vp+7Vy, (A2)

(9U+ \"
r (u-Vyu

spherical coordinates (0, ¢), and specializing to the case of b
polar flow (u,=u,=0) [28,29, we rewrite the Navier— b2F al (1 ap
Stokes equation D= —— | =T
1dp ) Uy
- =7 \" Up— - . (A3) Th ff f H i i
r 90 r2sir o e effect of curvature can thus be incorporated entirely into

a reduced gap width or an enhanced viscosity. Equation
The noteworthy term in Eq(A3) is the second term multi- (A10) recovers the usual Darcy’s law for flow in flat Hele-
plying viscosity which enters as a result of the curvilinearShaw cells with corrections of higher order lda. In this
coordinate system. work we will be interested in the case<{<p, with p~a.
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