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Saffman-Taylor problem on a sphere
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The Saffman-Taylor problem addresses the morphological instability of an interface separating two immis-
cible, viscous fluids when they move in a narrow gap between twoflat parallel plates~Hele-Shaw cell!. In this
work, we extend the classic Saffman-Taylor situation, by considering the flow between twocurved, closely
spaced, concentric spheres~spherical Hele-Shaw cell!. We derive the mode-coupling differential equation for
the interface perturbation amplitudes and study both linear and nonlinear flow regimes. The effect of the
spherical cell~positive! spatial curvature on the shape of the interfacial patterns is investigated. We show that
stability properties of the fluid-fluid interface are sensitive to the curvature of the surface. In particular, it is
found that positive spatial curvature inhibits finger tip-splitting. Hele-Shaw flow on weakly negative, curved
surfaces is briefly discussed.

DOI: 10.1103/PhysRevE.63.036307 PACS number~s!: 47.20.2k, 68.05.2n, 47.54.1r, 02.40.2k
ex
ac
fo
o
th

w
ui
e
D
c

m

pe
al
vi
an
e-
n

he
io
g
ich
-
el
a
re
e
g

or
gu

w

s as

in-
re-
the
rac-
by

l
is

cal
le-
ri-
d-

lls
in-

la-
ey
of

er

the

ture
nly
rties
the

wo-

uch
the
y

ture.
ed
I. INTRODUCTION

Formation and evolution of dynamic structures is an
citing area of nonlinear phenomenology. Of particular pr
tical and theoretical interest is the hydrodynamic pattern
mation of the growing interface between two fluids. One
the best studied pattern-formation systems of this type is
Saffman-Taylor problem@1,2#: it addresses motion of two
viscous, immiscible fluids in the narrow space between t
parallel, flat plates known as a Hele-Shaw cell. When a fl
of low viscosity displaces a fluid of higher viscosity, th
interface between them becomes unstable and deforms.
namic competition leads to the formation of fingering stru
tures.

Experiments and theory focus on two principal geo
etries:~i! rectangular@1,2# and~ii ! radial @3–5#. In rectangu-
lar cells the unperturbed interface is straight and the un
turbed flow is uniform and parallel to cell walls. In the radi
case the unperturbed interface is circular with the less
cous fluid pumped into the more viscous one at a point
the flow radially outward. For both situations, the initial d
velopment of the interface instability tracks the predictio
of linear stability theory@1–5#. After the initial surface de-
formation, as the unstable modes of perturbation grow, t
become coupled in a weakly nonlinear stage of evolut
@6,7#. Finally, the system evolves to a complicated late sta
characterized by formation of fingering structures, in wh
nonlinear effects dominate@2#. As a result, beautiful finger
bubble undulated structures are formed in rectangular c
while visually striking, fanlike, branched patterns rise in r
dial flow. Spreading, splitting, and competition are the th
basic growth mechanisms of the viscous fingering proc
@2#. In this work we are particularly interested in tip-splittin
events.

Despite the extensive experimental and theoretical w
on the Saffman-Taylor problem in both radial and rectan
lar setups, the majority of the studies focus on flow inflat
Hele-Shaw cells. Curiously, the dynamic behavior for flo
1063-651X/2001/63~3!/036307~10!/$15.00 63 0363
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in flat cells is described by the very same set of equation
those for flow in porous media@2#, which is indeed a highly
nonflat environment, characterized by voids and curved
ternal surfaces. Even though viscous fingering is not
stricted to occur between flat surfaces, the study of
Saffman-Taylor problem on curved surfaces has been p
tically neglected. One exception is the experimental work
Zhao and Maher@8#, which considers flow in a cylindrica
Hele-Shaw cell with a large radius of curvature. The flow
performed parallel to the cell axis. They used the cylindri
cell as an experimental realization of a flat rectangular He
Shaw cell with periodic boundary conditions. Their expe
ments showed that instabilities in cells with periodic boun
ary conditions are qualitatively similar to instabilities in ce
with physical sidewalls. The authors did not explore the
fluence of cell curvature.

On the theoretical side, Entov and Etingof@9# considered
the general mathematical problem of viscous flow in nonp
nar Hele-Shaw cells, in the zero-surface-tension limit. Th
applied conformal mapping techniques to derive a class
explicit solutions for the shape of the fluid domain und
study. As in Ref.@8#, the authors in Ref.@9# were not inter-
ested in the influence of the cell curvature in the shape of
interfacial patterns.

Spatial curvature has been a relatively overlooked fea
in the study of other pattern formation systems as well. O
recently researchers started to investigate how the prope
of the patterns could be affected by the curvature of
surface in which such structures evolve@10–15#. In the early
1990s Levine and collaborators studied coarsening of t
dimensional foams@10# and grain growth@11# on curved
surfaces. They showed that the stability properties of s
froth bubbles and grains depended on the curvature of
surface. Reference@12# reviews the dependence of man
chemical and biochemical surface processes on curva
Numerical studies of reaction-diffusion systems in curv
spaces examine the evolution of spiral waves@13# and the
occurrence of Turing patterns on a sphere@14#. These nu-
©2001 The American Physical Society07-1



s
all
s

e
i

ls
ld
y
e
er
w
lo

d

e
th
ro
so
e
n
el
ac

o

-
ca

he
II
o
h
in
o

de
I C
tip
its
a
te
ge
s
A
ric

s
-

fe
c
on

0
ce,
tant,

n
is

ssed
e

.
re-
s
e
to
, at
e.
te,

d

lcu-

le-

PARISIO, MORAES, MIRANDA, AND WIDOM PHYSICAL REVIEW E63 036307
merical simulations@13,14# indicate that curvature impose
geometrical restrictions on the shape of the patterns. Fin
Schoenborn and Desai@15# studied the intrasurface kinetic
of phase ordering on curved surfaces.

For the Saffman-Taylor problem, the interplay betwe
Hele-Shaw cell curvature and interfacial pattern formation
largely unexplored in the present literature. However, in
recent mode-coupling analysis of radial flow in flat cel
Miranda and Widom@7# suggested that cell curvature cou
be used as a control parameter to regulate the tendenc
wards finger tip-splitting. A thorough investigation of th
relationship between cell curvature and the fluid–fluid int
face dynamics still needs to be addressed. In this work
begin such investigations, focusing on the Saffman-Tay
problem on a sphere. Gravity effects have been studie
Ref. @16#.

The study of viscous flow in a nonplanar Hele-Shaw c
is of interest for both scientific and practical reasons. On
scientific level, the influence of spatial curvature on hyd
dynamic flow is a matter of fundamental interest. It al
provides a simple mathematical model to describe more g
eral situations involving the filling of a thin cavity betwee
two walls of a given shape with fluid. On the practical lev
it may have applications in a number of industrial, manuf
turing processes, ranging through pressure moulding of m
ten metals and polymer materials@17#, and formation of
coating defects in drying paint thin films@18#.

The outline of the work is the following: Section II de
fines Hele-Shaw flow between concentric, thin spheri
shells, considering fluid injection~withdrawal! at the north
~south! pole. We derive a differential equation describing t
early nonlinear evolution of the interface modes. In Sec.
we interpret results obtained in Sec. II and investigate b
the linear and weakly nonlinear evolution of the system. T
flat space limit of infinite radius of curvature is examined
Sec. III A. Section III B discusses the linear growth rates
unstable modes and relates these to the degree of lattitu
the unperturbed interface. Nonlinear analysis in Sec. II
concentrates on the effect of cell curvature on finger
splitting. We show that positive spatial curvature inhib
splitting. Flow on the northern and southern hemispheres
contrasted, and a symmetry-breaking behavior is detec
for the southern hemisphere tip-splitting is replaced by fin
tip-sharpening. Flow on weakly negative curved surface
briefly discussed. Section IV presents our final remarks.
appendix derives Darcy’s law for flow between concent
spheres.

II. MODE COUPLING DIFFERENTIAL EQUATION

Consider two immiscible, incompressible, viscous fluid
flowing in a narrow gap of thicknessb, between two concen
tric, thin spherical shells~see Fig. 1!. We name this device
the sphericalHele-Shaw cell. Assume thatb is smaller than
any other length scale in the problem, so the system is ef
tively two-dimensional. The flow takes place in the surfa
of a two-dimensional sphere, embedded in three-dimensi
space, and endowed with the metric@19#
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ds25dr21a2 sin2S r

aDdw2, ~1!

wherea is the radius of curvature of the sphere, 0<w,2p
denotes the polar angle measured on the sphere and<r
<pa is the geodesic distance from the radial flow sour
located at the sphere’s north pole. The sphere has a cons
positive Gaussian curvatureK51/a2 and a constant mea
curvatureH51/a. We presume the Gaussian curvature
more relevant than the mean curvature for reasons discu
in Secs. III A and III C. At any stage of our calculation, th
‘‘flat-cell’’ limit a→` ~or, equivalentlyK→0) gives all the
well-known familiar results for flow in flat Hele-Shaw cells

Denote the viscosities of the upper and lower fluids,
spectively, ash1 andh2. Between the two fluids there exist
a surface tensions ~Fig. 1!. The flows are assumed to b
irrotational, except at the interface. Fluid 1 is injected in
fluid 2 through an inlet located at the sphere’s north pole
a given flow rateQ, which is the area covered per unit tim
Fluid 2 is simultaneously withdrawn, at the same ra
through an outlet placed at the south pole.

During the flow, the fluid-fluid interface has a perturbe
shape described asr5R[R1z(w,t). The interface pertur-
bation amplitude is represented byz(w,t), andR5R(t) de-
notes the time-dependent unperturbed radius. We can ca
late R(t) from the time-dependent surface areaA(t)
54pa2 sin2(R(t)/2a). For flow rate Q we write A(t)
54pa2 sin2(R0/2a)1Qt then solve for

R~ t !5a arccosS C02
Qt

2pa2D , ~2!

FIG. 1. Schematic configuration of the flow in a spherical He
Shaw cell.
7-2



d

n
r.
f
in

is

ea
ua
e
fu
th
u
n

the

two

he
ing
es
ome
ell,
ro-

We

ing
nt

en

e-

er-

ace
-

SAFFMAN-TAYLOR PROBLEM ON A SPHERE PHYSICAL REVIEW E63 036307
whereC05cos(R0 /a), andR0 is the unperturbed radius att
50. The unperturbed shape is a polar cap of geodesic ra
r5R, surface areaA and circumferenceL52pa sin(R/a).
Note the identityQ5vL wherev5dR/dt is the velocity of
the unperturbed interface.

We express the net perturbationz(w,t) in the form of a
Fourier expansion

z~w,t !5 (
n52`

1`

zn~ t !exp~ inw!, ~3!

where

zn~ t !5
1

2p E
0

2p

z~w,t !exp~2 inw!dw ~4!

denotes the complex Fourier mode amplitudes a
n50,61,62, . . . is thediscrete azimuthal wave numbe
To keep the area of the perturbed shape independent o
perturbationz, we express the Fourier mode correspond
to n50 in the expansion~3! as

z0~ t !52
1

2a
cotS R

a D (
nÞ0

uzn~ t !u2. ~5!

The constraint~5! is intrinsically a nonlinear concern and
not required in linear stability analysis.

Since we are interested in both linear and early nonlin
behavior of the system, we must derive a differential eq
tion for zn , correct to second order. This second-ord
mode-coupling equation considers the presence of a
spectrum of modes. We begin the hydrodynamic study of
system by considering a generalized version of the us
Darcy’s law@1,2#, adjusted to describe flow between conce
tric spheres~see the Appendix!

vj52
b2

12h j
“pj , ~6!

where vj5vj (r,w) and pj5pj (r,w) are, respectively, the
velocity and pressure in fluidsj 51 and 2. The gradient in
Eq. ~6!, associated with the metric~1!, is @19#
iv
th
e

e
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]r
r̂1

1

a sin~r/a!

]

]w
ŵ, ~7!

where the unit vectorsr̂ and ŵ point in the direction of
increase ofr andw, respectively. Equation~7! was obtained
from the corresponding three-dimensional expression for
gradient in spherical coordinates (r ,u,w), by keepingr 5a
and noting thatu5r/a.

At the interface, the pressure difference between the
fluids is governed by the mean curvature~the average of the
two principal curvatures! of the fluid-fluid interface@2#. We
can identify the directions of the principal curvatures in t
limit of b smaller than any other length scale by consider
a ‘‘tangent Hele-Shaw cell’’ consisting of two parallel plan
tangent, respectively, to the inner and outer spheres at s
point along the interface. Within the tangent Hele-Shaw c
one principal curvature is associated with the interface p
file in the direction perpendicular to the tangent planes.
call this curvaturek' and note that it is of order 1/b with a
specific value set by interface contact angles. The remain
direction of principal curvature is parallel to the tange
plane and tangent to the interface. We call this curvaturek i .
Then the pressure jump boundary condition may be writt

~p12p2!uR5s~k i1k'!uR . ~8!

As was the case for flow in flat Hele-Shaw cells,k' is much
larger thank i but is nearly constant@20,21#. This curvature
does not significantly affect the motion in our problem, b
cause its gradient is nearly zero.

Since the closed boundary describing the fluid-fluid int
face is itself on the top of a curved surface~sphere!, the
calculation of the ‘‘intra-surface’’ interface curvaturek i is
not as simple as it was in the flat-cell case@4,19#. Taking into
consideration the fact that the interface evolves in the surf
of a sphere of radiusa, we derive a slightly involved expres
sion for the fluid-fluid interface curvature
k i5

Fcos~r/a!a2 sin2~r/a!12 cos~r/a!S ]r

]w D 2

2a sin~r/a!
]2r

]w2G
Fa2 sin2~r/a!1S ]r

]w D 2G3/2 . ~9!
The sign convention for the curvaturek i is such that
a circular interface above the equator has posit
curvature, whereas it has negative curvature below
equator. Keeping terms up to second order in the p
turbation amplitudez, we rewrite the interfacial curvatur
as
e
e
r-

~k i!uR5H C

aS
2

1

a2S2 S z1
]2z

]w2D
1

C

a3S3 F z21
1

2 S ]z

]w D 2

12z
]2z

]w2G J , ~10!
7-3
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where we have introduced the shorthand notationS
5sin(R/a) andC5cos(R/a). Exactly at the equator (C50),
only the term in~10! that is linear inz survives.

Taking advantage of the irrotational and incompressi
flow conditions, we define the velocity potentialf j in each
of the fluids, wherevj52“f j . The velocity potential sat-
isfies Laplace’s equation“2f j50, where“2 is the two-
dimensional Laplacian defined on the surface of the sph
Combining the velocity potential with Eqs.~8! and ~9! for
the pressure difference and the generalized Darcy’s law~6!,
we write the equation of motion

AS f1uR1f2uR
2 D2S f1uR2f2uR

2 D52a~k i!uR , ~11!

where

A5
h22h1

h21h1
~12!

is the viscosity contrast and

a5
b2s

12~h11h2!
, ~13!

contains the surface tension.
Now define Fourier expansions for the velocity potenti

f j . Far from the interface the velocity field should approa
the unperturbed steady flow with a circular interface of
diusR. Thus forr→0 andr→pa the velocity potentialsf j

approachf j
0 , the velocity potentials for purely radial (r̂ di-

rection! flow, satisfying Laplace’s equation

f j
052

Q

2p
logF tan~r/2a!

tan~R/2a!G1D j , ~14!

whereD j are independent ofr andw. The general velocity
potentials obeying all these requirements are

f j5f j
01 (

nÞ0
f jn~ t !F tan~R/2a!

tan~r/2a! G
(21) j unu

exp~ inw!.

~15!

The trigonometric dependence onr transforms, in the flat-
cell limit a→`, into the ratioR/r. In order to calculate the
mode coupling differential equation for the system, we s
stitute expansions~14! and ~15! into the equation of motion
~11!, keep second order terms in the perturbation amplitud
and Fourier transform them.

To conclude our derivation we need additional relatio
expressing the velocity potentials in terms of the perturba
amplitudes. To find these, consider the kinematic bound
condition which states that the normal components of e
fluid’s velocity at the interface equals the velocity of th
interface itself@22#. Using the gradient~7! we write the ki-
nematic boundary condition for flow in a sphere as

]R
]t

5F 1

a2 sin2~r/a!

]r

]w

]f j

]w G
r5R

2S ]f j

]r D
r5R

. ~16!
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Inserting expressionR5R1z(w,t) and Eq.~15! for f j into
the kinematic boundary condition~16!, we solve forf jn(t)
consistently to second order inz to find

f1n~ t !52
aS

unu
żn2

QC

2paSunu
zn

1 (
n8Þ0

S sgn~nn8!2
C

unu D żn8zn2n8

1
QC

2pa2S2 (
n8Þ0

S sgn~nn8!1
S2

2Cunu D zn8zn2n8 ,

~17!

and

f2n~ t !5
aS

unu
żn1

QC

2paSunu
zn

1 (
n8Þ0

S sgn~nn8!1
C

unu D żn8zn2n8

1
QC

2pa2S2 (
n8Þ0

S sgn~nn8!2
S2

2Cunu D zn8zn2n8 .

~18!

The overdot denotes total time derivative. The sign funct
sgn(nn8)51 if (nn8).0 and sgn(nn8)521 if (nn8),0.

We can use relations~17! and~18! to replace the velocity
potentialsf j in the equation of motion~11! with the pertur-
bation z and its time derivativeż. Keeping only quadratic
terms in the perturbation amplitude, and equating Fou
modesn on each side of Eq.~11!, leads to the differential
equation for perturbation amplitudeszn . For nÞ0,

żn5l~n!zn1 (
n8Þ0

@F~n,n8!zn8zn2n81G~n,n8!żn8zn2n8#,

~19!

where

l~n!5F Q

2pa2S2
~Aunu2C!2

a

a3S3
unu~n221!G ~20!

is the linear growth rate, and

F~n,n8!5
unu
aSH QAC

2pa2S2 F1

2
2sgn~nn8!G

2
aC

a3S3 F12
n8

2
~3n81n!G J 1

Q

4pa3S
, ~21!

G~n,n8!5
1

aS
$Aunu@12sgn~nn8!#2C% ~22!

are the second-order mode coupling terms. Equation~19! is
the mode coupling equation of the Saffman-Taylor probl
in a spherical Hele-Shaw cell. It gives us the time evoluti
7-4
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SAFFMAN-TAYLOR PROBLEM ON A SPHERE PHYSICAL REVIEW E63 036307
of the perturbation amplitudeszn accurate to second order. I
the following sections we study Eq.~19! in more detail, and
investigate the role played by cell geometry in the interfa
dynamics.

III. DISCUSSION

We use the mode coupling Eq.~19! to investigate the
linear instability of individual modes and the coupling of
small number of modes. The most noteworthy effect of c
vature we identify concerns its influence on finger t
splitting. Tip-splitting is related to the influence of a fund
mental mode on the growth of its harmonic@7#. We taken as
the fundamental and 2n as the harmonic. To observe inte
facial instability of the fundamental moden, we must have
l(n).0. This occurs if the destabilizing contributionQA in
Eq. ~20! is positive and sufficiently large compared with th
stabilizing surface tension term proportional toa. To ob-
serve growth of the harmonic mode 2n, we presume thatQA
is sufficiently large thatl(2n) is non-negative.

To simplify our discussion it is convenient to rewrite th
net perturbation~3! in terms of cosine and sine modes

z~u,t !5z01 (
n51

`

@an~ t !cos~nu!1bn~ t !sin~nu!#, ~23!

where an5zn1z2n and bn5 i (zn2z2n) are real-valued.
Without loss of generality we may choose the phase of
fundamental mode so thatan.0 andbn50. We replace the
time derivative termsȧn and ḃn by l(n)an and l(n)bn ,
respectively, for consistent second order expressions. U
these circumstances the equations of motion become

ȧ2n5l~2n!a2n1 1
2 T~2n,n!an

2 , ~24!

ḃ2n5l~2n!b2n , ~25!

where the tip-splitting function is defined as

T~2n,n!5@F~2n,n!1l~n!G~2n,n!#. ~26!

Note that the sign ofT(2n,n) dictates if finger tip-
splitting is favored or not by the dynamics. IfT(2n,n),0, at
second order the result is a driving term of orderan

2 forcing
growth ofa2n,0. With this particular phase of the harmon
forced by the dynamics, then outwards-pointing fingers o
the fundamental moden tend to split. In this case the drivin
term in equation of motion~24! spontaneously generates th
harmonic mode. In contrast, ifT(2n,n).0 growth of a2n
.0 would be favored, leading to outwards-pointing fing
tip-sharpening. Note that modeb2n , whose growth is unin-
fluenced byan , skews the fingers of moden. In the presence
of a2n,0, the role ofb2n is to favor one of the two split
fingers over the other.

A. The flat-cell limit

We begin our discussion by analyzing the flat-cell limit
the mode-coupling expression~19!. We hold fixed the unper-
turbed interface velocityv5Q/L. Three distinct flat space
03630
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limits can be taken:~i! ~north pole! let a→` holdingR finite
so thatC→1 andaS→R; ~ii ! ~south pole! let a→` holding
R8[pa2R finite; so thatC→21 andaS→R8; ~iii ! ~tropi-
cal! let R/a be constant and hold fixedk[2pn/L. These
three limits correspond to three physically distinct flat spa
flow problems. Our goal in this section is to verify that th
linear and nonlinear terms in the equation of motion~19!
reduce to their expected forms in the flat space limit. T
actual evolution of interfaces according to the equations
motion is then discussed in greater detail in Secs III B a
III C.

At the north pole@case~i!, C→1#, we recover the mode
coupling equations@7# of flat, radial divergent flow @23#,
related to outward radial motion in which fluid 1 push
fluid 2:

l~n!5F Q

2pR2
~Aunu21!2

a

R3
unu~n221!G ,

F~n,n8!5
unu
R H QA

2pR2 F1

2
2sgn~nn8!G

2
a

R3 F12
n8

2
~3n81n!G J ,

G~n,n8!5
1

R
$Aunu@12sgn~nn8!#21%. ~27!

Provided the viscosity contrastA.0, so that the less viscou
fluid pushes the more viscous fluid, the interface is linea
unstable and exhibits finger growth. As the interface pert
bation grows, the nonlinear mode coupling broadens
splits the outward-pointing fingers and sharpens the inwa
pointing fingers. This occurs becauseT(2n,n),0 when
l(2n)>0.

In contrast, at the south pole@case~ii !, C→21#, we ob-
tain flat, radialconvergentflow @23# equivalent to the inward
radial motion corresponding to withdrawal of fluid 2 su
rounded by fluid 1. Provided thatQA.0, so that the less
viscous fluid displaces the more viscous fluid, the interfa
remains linearly unstable. However, now the outwar
pointing fingers sharpen because for negativeC we find
T(2n,n).0 when l(2n)>0. The asymmetry betwee
north and south pole behaviors occurs primarily in t
nonlinear term and comes from the terms proportional toC.
In contrast, the linear growth ratel(n) is nearly symmetric
between the north and south pole limits. This can be und
stood because interchanging the north and south p
is equivalent to reversing the sign ofQ ~the direction of
flow! and the sign ofA ~interchanging the fluid viscosities!
while holding the surface tensiona unchanged. However
the term in l(n) proportional toC breaks this symmetry
slightly.

A special example of the tropical case~iii ! is the equato-
rial limit, for which C50 and S51. This case should be
compared with the cylindrical flow geometry, taking the cy
7-5
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PARISIO, MORAES, MIRANDA, AND WIDOM PHYSICAL REVIEW E63 036307
inder tangent to the sphere at the equator. The flat space
of this problem indeed reduces to the problem of rectang
flow in flat space with periodic boundary conditions. In pa
ticular,

l~n!→uku@Av2ak2#,

F~n,n8!→0, ~28!

G~n,n8!→Auku@12sgn~kk8!#.

As expected, there is no tendency for tip-splitting on t
cylinder. This alludes to our suggestion that tip-splitting
controlled by Gaussian curvatureK rather than mean curva
ture H because variation of the radius of curvature of t
cylinder alters the mean curvature while the Gaussian cu
ture remains zero. Tip-splitting is absent for any value of
mean curvature.

Before the limit is reached, there are small differenc
between the spherical and cylindrical cases. For example
surface tension contribution tol(n) vanishes fork50 on a
cylinder corresponding to translation invariance of the int
face length. On a sphere the corresponding displacem
moves the interface from the equator to the tropics, shor
ing the interface and lowering the surface energy. Howe
on a sphere the modesn561 correspond to a global off
center shift of the circular interface preserving circular sha
and perimeter. Thus the surface tension term vanishes fn
561 on the sphere while this mode increases the perim
and raises the energy on a cylinder.

B. Linear growth

Consider the purely linear contribution, which appears
the first term on the right-hand side of Eq.~19!. Since R
varies with time, the linear growth ratel(n) is time depen-
dent as well. This implies that the actual relaxation or grow
of moden is not proportional to the factor exp@l(n)t#, but
rather
te

e
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zn~ t !5zn~0!expF E
0

t

l~n!dt8G . ~29!

If *0
t l(n)dt8.0 the disturbance grows, indicating instab

ity. Two relevant facts can be extracted from the line
growth rate: ~i! the existence of a series of critical rad
Rc(n) @defined by settingl(n)50# at which the interface
becomes unstable for a given moden; ~ii ! the presence of a
fastest growing moden* , given by the closest integer to th
maximum of Eq.~20! with respect ton @defined by setting
dl(n)/dn50#. In view of Eq.~29! n* is not simply related
to the number of fingers present, even in the early stage
pattern formation. Furthermore, in the nonlinear regime
subsequent tip-splitting process and mode competition re
in a final number of fingers which can differ from the num
ber present in the linear regime.

Cardoso and Woods@24# analyze flat space radial flow
assuming the presence of a constant low level of noise
ing the whole evolution of the interface~their ‘‘model B,’’
also see Ref.@7#!. The sources of noise may come fro
inhomogeneities on the surface of the Hele–Shaw cell,
regularities in the gap thicknessb, or from thermal or pres-
sure fluctuations@25#. The predictions of this model are i
qualitative agreement with experimental observations wit
the linear regime@24# and the nonlinear regime@7#.

Suppose that we begin with an initially circular interfa
that is steadily expanding. During the interface expans
each moden is perturbed with a constant~in time! random
complex amplitudezn(0). This noise amplitude contains a
n dependent random phase but its magnitudeuzn(0)u is in-
dependent ofn by assumption. As the interface continues
expand, it progressively reaches critical radiiRc(n) for n
52,3, . . . .Once a particularRc(n) is reached, the pertur
bation amplitudezn starts to vary with time. Within this
model, the first order~linear! solution of Eq.~19! can be
written as
zn
lin~ t !5H zn~0! if R,Rc~n!,

zn~0!H S 11Cc

11C D F 1

T2
GAunu21

exp@C~Aunu2C!~T121!#J if R>Rc~n!,
~30!
m

are
ce.
s

ose
re
ure
where the functions T15tan@Rc(n)/a#/tan(R/a), T2

5tan@Rc(n)/2a#/tan(R/2a), andCc5cos@Rc(n)/a#.
To see the overall effect of Eq.~30!, we plot the time

evolution of the interface using the experimental parame
given in Paterson’s classical experiment@5#. Paterson ob-
served the rapid growth of fingers, as air (h1'0) was blown
at a relatively high injection rate,Q59.3 cm2/s, into glycer-
ine @h2'5.21 g/(cm s)# in a radial source flow Hele-Shaw
cell. The thickness of the cellb50.15 cm and the surfac
tension s563 dyne/cm. We take into account modesn
ranging fromn52 up to 20. We evolve from initial radius
rs

R050.05 cm. The noise amplitudeuzn(0)u5R0/1000. Figure
2 depicts the evolution of the interface, for a rando
choice of phases, up to timet520 s. We set the radius
of the spherea510 cm. We encourage the reader to comp
the resulting interface with equivalent figures in flat spa
Reference@7# contains a figure in which growth condition
are similar. In particular, thephasesof the initial perturba-
tions are identical, although in the present case we cho
smaller initial amplitudes. It is also of interest to compa
with flat space experimental patterns found in the literat
@3,5,23–26#.
7-6
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C. Nonlinear behavior and tip-splitting

To visualize the consequences of the second order ter
the equations of motion, we solve Eq.~19! to second order
accuracy. If we substitute the linear solution given in E
~30! into the second-order terms on the right-hand side of
~19!, we obtain the differential equation

żn5l~n!zn1W~n,t !, ~31!

where

W~n,t !5 (
n8Þ0

@F~n,n8!zn8
linzn2n8

lin
1G~n,n8!żn8

linzn2n8
lin

#

~32!

acts as a driving force in the linearized equation of mot
~31!. Equation~31! is a standard first order linear differenti
equation@27# with the solution

zn~ t !5H zn~0! if R,Rc~n!

zn
lin~ t !H 11E

tc(n)

t FW~n,t8!

zn
lin~ t8!

Gdt8J if R>Rc~n!.

~33!

Heretc(n) is the time required for the unperturbed growth
reach radiusRc(n) and can be calculated from Eq.~2!. This
solution describes the weakly nonlinear evolution, where
dominant modes just become coupled by nonlinear effec

We use the second order solution~33! to investigate the
nonlinear coupling among various modesn. In Fig. 3, we
plot the interface for a certain time (t520 s), considering
the same random choice of initial phases as was employe
Fig. 2, and coupling all modes with 2<n<20. The nonlinear
evolution leads to wider fingers and their tips become m
blunt. These fingers spread and some of them start to b

FIG. 2. Time evolution of the fluids according to Eq.~30!, in-
cluding modes 2<n<20. The initial perturbation amplitude
uzn(0)u5R0/1000 andR050.05 cm. Other parameters are given
the text. We show the fluid-fluid interface att520 s.
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cate, by splitting at the tip. As was shown in Eq.~24!, tip
splitting is caused by fingers of moden driving the growth of
their own harmonic 2n.

Now we turn our attention to the investigation of ho
curvature influences finger tip-splitting for Hele-Shaw flo
on a sphere. It has been shown in Ref.@7# that, for flat,
divergent radial flow under the condition thatl(2n)>0, we
haveT(2n,n),0. Thus, when the harmonic is able to grow
finger tip-splitting is favored. In Sec. III A we showed that
the limit of small cell curvatureK we recover the flat spac
limit where we knowT(2n,n) is negative. To carry out ou
current analysis, we consider the case in whichl(2n)50
and see how the curvature influencesT(2n,n).

Since spherical Hele-Shaw flow involves many indepe
dent parameters we change only one relevant quantity
time to see what each one does. We hold the unpertur
interface velocityv and the unperturbed interface conto
lengthL fixed, while varying the curvatureK. This isolates
the influence of spatial curvatureK from the effect of varia-
tions in v andL. FixedL means that fixed mode numbern
corresponds to a fixed wavelength.

We adopt aninstantaneousapproach: we look at the lin
ear growth rate and mode coupling at an instant in tim
ignoring the past history of how a given interface arose fr
some initial condition followed by growth. Such an instant
neous approach, at whichL and v have a particular value
enables us to compare the behavior of interfaces evolvin
distinct background curvatures, but under dynamica
equivalent circumstances. Moreover, at the instant when
interface circumferenceL in curved space equals the circum
ference in flat space, if the two velocities also match,
identity Q5vL shows that theQ value in flat space equal
theQ value in curved space. Therefore, it is advantageou
look at the instantaneous tendency towards tip-splitting
interfaces of identical unperturbedv andL.

Consider a particularv andL combination at the onset o
growth of mode 2n @using the conditionl(2n)50# in the

FIG. 3. Nonlinear evolution according to Eq.~33!. All physical
parameters and initial conditions are the same as those use
Fig. 2.
7-7
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limit of flat space, where it is known thatT(2n,n),0. To
illustrate how tip-splitting varies with curvature for flow on
sphere, we plot in Fig. 4 the tip-splitting functionT(2n,n) as
a function ofK. The solid~dashed! curves refer to the be
havior in the northern~southern! hemisphere. By inspecting
Fig. 4 we notice that, in the northern hemisphere there
suppression of tip-splitting for increasingly larger curvatu
because the magnitude ofT(2n,n) is maximum for the flat,
divergent radial case (K50) and decreases as curvature
increased. For eachn there is some value ofK for which the
circle of circumferenceL hits the equator. This is precisel
the point at which northern and southern hemisph
branches of the curves meet in Fig. 4.

For the southern hemisphereT(2n,n) is always positive.
Consequently, we should not expect finger tip-splitting
outward-pointing fingers in this hemisphere. Actually, fing
tip-splitting is replaced by tip-narrowing, along with a spl
ting of the inward-pointing fingers. Finger tip-narrowing
regulated by the curvatureK.

Another noteworthy point about Fig. 4 is the evident sy
metry breaking inT(2n,n) between northern and southe
hemispheres. The justification for this asymmetry is sim
to the one that explains why the interface is always in-
asymmetric in flat radial flow: if we are located at either po
we can always distinguish regions that are inside and out
the interface. That is why convergent and divergent flat,
dial flows are not equivalent@23#. From this point of view,
the asymmetry observed in Fig. 4 should be somehow
pected.

We conclude this section presenting the lowest order c
vature expansion forT(2n,n) and studying how curvatureK
influences tip-splitting for small curvature values. Using t
instantaneous approach described above, series expans
Eq. ~26! for the northern hemisphere yields

T~2n,n!5
Q2~2n211!

32p2an~2n11!2 F2
Q2

8p2an2~2n11!2
1KG

1O~K2!. ~34!

FIG. 4. Variation of T(2n,n) as a function of the spherica
Hele-Shaw cell curvatureK, for modes n58,10,12. The solid
~dashed! curves describe behavior in the Northern~Southern! hemi-
sphere. The units ofT(2n,n) and K are (cm s)21 and cm22, re-
spectively.
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The perturbative expansion~34! for smallK explicitly shows
a linear correction to the flat space limit (K50) that reduces
the magnitude ofT(2n,n), inhibiting finger tip-splitting. A
similar kind of expansion can be done for the southern he
sphere, resulting in enhanced tip-sharpening. Those re
are in agreement with the small curvature behavior depic
in Fig. 4.

Equation ~34! allows us to make predictions about tip
splitting behavior for Hele-Shaw flow in~weakly! negatively
curved backgrounds. This type of flow could happen,
instance, between two saddlelike surfaces. Actually, flow
porous media seems to be somehow linked to flow on ne
tively curved surfaces. Porous materials define multiply c
nected surfaces, presenting negativeaverageGausssian cur-
vature

K̄5

E K dS

E dS
5

4p~12g!

E dS
, ~35!

wheredS denotes an infinitesimal area element andg is the
so-called genus@19#, which denotes the number of hole
present in a given surface. Expression~35! relates the inte-
gral of the Gaussian curvatureK of a given surface to its
topological properties, by virtue of the Gauss-Bonnet th
rem @19#. From~35! we verify thatK̄ becomes progressivel
negative when the number of holes is increased: that is w
K̄.0 for a sphere (g50), K̄50 for a torus (g51) andK̄
,0 for a g-torus (g>2). In this sense, a medium which
rich in pores~holes! would present negative curvature fe
tures. However, flow on surfaces ofconstantnegative Gauss-
ian curvature is complex and to treat the problem rigorou
would require an interesting generalization of our formalis
beyond the scope of the present paper.

Here we simply point out what would be the behavior f
flow on surfaces that are slightly~negatively! curved. It is
easy to see, by performing the substitutionK→2K in ~34!,
that negative curvature should enhance finger splitting
comparison to the flat case. This is in striking contrast to
problem of flow in positively curved surfaces, such as t
sphere, where curvature leads to suppression of tip-splitt
This sets an important distinction between Hele-Shaw flo
on surfaces with negative curvature and those on surfa
with positiveK. Our results confirm explicitly the prediction
made in Ref.@7# about the role of cell curvature on finge
splitting.

The fact that the correction is linear inK supports our
suggestion that Gaussian curvature is more relevant
mean curvature. The same expansion Eq.~34! could be writ-
ten in terms of the square of mean curvatureH. However,
then we would predict suppression of tip-splitting for bo
positive (H.0) and negatively (H,0) curved surfaces. We
believe tip-splitting is enhanced for negative Gaussian c
vature because the metric creates ample space for the
fingers to penetrate without mutual competition.
7-8
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SAFFMAN-TAYLOR PROBLEM ON A SPHERE PHYSICAL REVIEW E63 036307
IV. CONCLUDING REMARKS

In this paper we generalized the traditional Saffma
Taylor problem by studying viscous flow on curved surfac
Our main purpose was to investigate the influence of spa
curvature on viscous fingering pattern formation, when fl
flow takes place on a sphere. By deriving the equation
motion for the interface pertubation amplitudes, using
mode-coupling approach, a study of both linear and wea
nonlinear stages of evolution could be carried out.

We have shown that cell curvature can be used as a
trol parameter to discipline splitting of the viscous finge
The fluid-fluid interface can be more stable or unstable, w
respect to tip-splitting, depending on the curvature of
surface to which the flow is confined. We also detected
asymmetry on tip-splitting behavior depending where the
terface evolves: while tip-splitting may be still present on t
northern hemisphere, it is completely replaced by finger
sharpening on the southern hemisphere. We also found
dence that Hele-Shaw flows on negatively curved surfa
would present enhanced tendency to tip-splitting, so hig
branched patterns may be expected. In summary, we h
explicitly verified that interfacial behavior is coupled to th
geometry of the Hele-Shaw cell, so that curvature has imp
tant consequences for flow dynamics.
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APPENDIX: DARCY’S LAW ON A SPHERE

This appendix derives Darcy’s law for viscous flow b
tween concentric spheres. The derivation is based upon
sults presented in Birdet al. @28#. We begin with a
coordinate-free representation of the continuity equation
an incompressible fluid

“•u50 ~A1!

and the Navier–Stokes equation

rF]u

]t
1~u•“ !uG52“p1h“2u, ~A2!

whereu denotes the three-dimensional fluid velocity and
neglect the acceleration due to gravity. Neglecting the in
tial terms on the left-hand side of Eq.~A2!, transforming to
spherical coordinates (r ,u,w), and specializing to the case o
polar flow (ur5uw50) @28,29#, we rewrite the Navier–
Stokes equation

1

r

]p

]u
5hS“2uu2

uu

r 2 sin2 u D . ~A3!

The noteworthy term in Eq.~A3! is the second term multi
plying viscosity which enters as a result of the curviline
coordinate system.
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To determineuu(r ,u) note that the continuity Eq.~A1!
adapted for polar flow

1

r sinu

]~uu sinu!

]u
50 ~A4!

demands a solution of the form

uu~r ,u!5
u~r !

sinu
. ~A5!

Insert this form into the Navier–Stokes Eq.~A3! and multi-
ply by r sinu to separate variables:

sinu
]p

]u
5

h

r

]

]r S r 2
]u

]r D . ~A6!

Because the left-hand side involves only angleu and the
right-hand side is radial, involving onlyr, each side must be
constant sharing a common valueB. The solution of the ra-
dial equation subject to no-slip boundary conditionsu(a)
5u(a1b)50 is

u~r !5
au0

b2

~r 2a!~a1b2r !

r
, ~A7!

whereB522hau0 /b2.
Darcy’s law for Hele-Shaw cells is obtained by averagi

the three-dimensional velocityu over the gap widthb. We
choose to average in theradial direction r and obtainv̄u

5ū/sinu with

ū5
u0

6
F S b

aD'
u0

6 S 12
b

2a
1••• D , ~A8!

where

F S b

aD56S a

bD 3Fb

a S 11
b

2aD2S 11
b

aD logS 11
b

aD G .
~A9!

Equation ~A9! could also be written, in a more
compact form, as a hypergeometric functionF(b/a)
5F(1,2;4;2b/a).

Equation~A8! generalizes the usual flat-cell velocity a
erage. Darcy’s law becomes

v̄u52

b2F S b

aD
12h S 1

a

]p

]u D . ~A10!

The effect of curvature can thus be incorporated entirely i
a reduced gap widthb or an enhanced viscosityh. Equation
~A10! recovers the usual Darcy’s law for flow in flat Hele
Shaw cells with corrections of higher order inb/a. In this
work we will be interested in the caseb!z!r, with r;a.
7-9
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